
Educational Materials

AD-A2 2 548CMU/SEI-!91-EM-4
E1111111 1111 E ____1_111 Carnegie Mellon University

-~ Software Engineering Institute

A Software- Engineering D T .1 C
Project Course ELECTE $
with- a Real- Client NOVIL 5 1991

Part 1: Overview

Bernd- Bruegge
John Cheng

Mary Shaw-
July 1991-

7/

424

The bloing statement of assrance is more than a statement required to comply wth the federal law Ttrs a sincere statement by the uo.Vrsity to assure that an
people wreicluded min tMe dvesity whc' mak~es Catnegie Meslon an exn'og place Carnege Mellon wilres to include penW w lthort regard to race cciloc natonat
agin. swc timanicapy te0900, creed, ancestry. beriet age veteran status or sernal onantaon

Carinegi Mellon Urnvers4y does not discznmnate and CaIneg Mello Un'*rsdy iseqwrfed not torhscrml nale M admofte anfl emrpoyrreig on the WaSS Of race
color. nation orgin, seirotr anclcapuwnoiatondo!T4te Ai of thie Crat RMousAct of 1964. Tate IX of the Eft",ooni Amenoveresof *1l2 and Ieuon 504 o' tte
Rehrabation Act of 1973 or other federal, state. Or local taws orerecuse orders In adilon Car.egie Mellon doe no tiscritnate in admsonrs ar'd eflptoyrrent On
thebesci riron, creed, ancesry, bekefage vetean status or sexial orentaton in, elatin of any fra state, or tocal 44s or execuhem order tnqsr es corcetnm
log S aplton of M4n pol-cy shoud be clreced to the Provost. Carnege Mellon Universly 5000 Forbes &venue Prrsfrt , PA 15213 teeporve (412) 268-6054 or trir
Vice Ptaa'deo forEnret, CarnegieMelon Uraversy, 5000 Forbes Avenu-e Prttstu'h. PA tS2titfelephoret4t2l266-2056

Educational Materials
CMU/SEI-91-EM-4

July 1991-

A Software Engineering
Project Course

With a Real Client

Part h Overview

Bernd Bruegge
John Cheng

Carnegie Mellon University
School of Computer Science

Mary Shaw
Carnegie Mellon University

School of Computer Science-and
Software Engineering Institute

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This document was prepared-for the

SEI Joint Program Office-
ESD/AVS
Hanscom AFB, MA 01731

The ideas and-findings in-this document should not-be construed-as an official
DoD position. The document is published in the interest of scientific and
-technical information exchange.

Review and-Approval

This document-has been reviewed and-isapproved-forpublication.

FOR THE COMMANDER-

Charles J. Ryan, Major, USAF
SEI Joint Program Office

The Software Engineering- Institute is sponsored by the U.S. Department of Defense. This
work was -funded in part by the Dept. of Defense and in part by the School of Computer
Science, Carnegie Mellon University.

Copyright 1991- by Bernd Bruegge, John Cheng, and Mary Shaw.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer
of scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel-and their contractors. To obtain a copy, please contact DTIC directly: Defense
Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the NationalTechnical Information Service. For information on
ordering, please contact NTIS directly: National Technical-Information Service,-U.S. Department of Commerce,
Springfield, VA 22161-2103.

Use of any trademark in this-report is not intended in any way to infringe on the rights of the trademark holder.

Table-of Contents

Part I: Overview 1
LL- Introduction 1
L2. The Students 3
1.3. Syllabus (final version) 6
L4. Lecture Component 15
L5. Project Component 17

1.5.1. Design Rationale 17
1.5.2. Project Organization 18
1.5.3. Team Selection and Internal Team Management 18-
1.5.4. Phases: 19
L5.5. Trade Between Student Initiatives and Structure Imposed by

the Instructor 20-
L5.6. Trade Between Pedagogical and Project Objectives 2D

L5.7. Risks and Problems 21

5.8. Internal Project Review 22

L5.9. F&planation of Project Exhibits (Part IM of this set of
educational materials) 24

1.6. Administration 2D

1.6.1. Staffing 2D

1.6.2. Credit and Grading Policy 30
LG3. Coordination Between Lectures and Project 32

1.6.4. Communication 32

1.6.5. Mechanics 34
1.7. Conclusions 41

CMU/SEI-91-EM-4 ;A'" va iand/ori

ii CMU/SEI-91-EM-4

List of Figur

Figure LL- Students' Prior Software Course Experience 4

Figure L2.:Students' Operating System Experience at Beginning of
Course 4

Figure L3. Values of Grading-Spreadsheet 36

Figure L4. Formula for Grading Spreadsheet 37

Figure L5. Template for Student Form Letter 38

Figure L& Student Data to Merge into Form Letter 39
Figure UT. Student Form Letter 40

CMU/SEI-91-EM-4 iii

A Software-Engineering Project Course with a Real
Client

Abstrct
At Carnegie Mellon University, we taught an introductory software
engineering course that was organized around a -project with a real
deliverable for a real client. This case study describes the background and
organization of the course and presents the lecture and project materials
produced by the faculty and students of the course.

Part I: Overview

LL Introduction

Carnegie Mellon University has offered a course -in software engineering since -the early
1970s. Although its organization and position in- the curriculum have changed over the
years, the course has always had the primary objective of teaching undergraduate
students something about the practical problems of building real-world software--groups
of people must cooperate-to understand just what problem is being solved and then create
and integrate a collection of software modules that solve the problem. This traditionally
has been a group-project course with -a lecture component. In recent years it has been a
senior-level elective; its prerequisites are intended to ensure that students have already
studied medium-sized systems such as compilers and operating systems. Often students
who select this course are considering entering the job market-as software developers.

The software engineering course is often our last chance to show students that developing
real software systems is not at all the same-thing as writing-a programming assignment
that will be graded and thrown away. -We ask them to think about what the end user really
wants,- about understandability-and reliability in use, about integration with other system
facilities, and about the problems their work will present to future maintainers.

In the summer of 1989, we decided that we could make the characteristics of software
systems more vivid by choosing a project whose result could benefit some group on
campus, preferably the campus computing community at large. We polled thf, local
community for project suggestions and chose a proposal from the Information Technology
Center (the group that developed Andrew, the campus-wide computing system). They
suggested combining existing software facilities to provide a bridge between electronic9 mail and facsimile transmission provided by a special fax board in-a personal computer.

CMU/SEI-91-EM-4

The students succeeded-in developing a working2prototype, which they demonstrated'in a
formal presentation and-acceptance-test at the client's site.

This report, which explains how the course was-organized and presented contains-three
parts: this overview; -our lecture materials- (transparency masters, -homework, -and
quizzes); and the project-materials prepared by us-and by our students. In the remainder
of the overview, we describe the background-of the students, present the formal course
syllabus, =explain the organizationof the lecture and project components, and discuss
some of the strategies and mechanisms we used-to administer the course. The lecture-and
project materials are-distributed separately (page 43 contains-an order form for Parts II
and III).

2J

2 CMU/SEI-91-1EM4

L2. The Students

This-version of the-course was taught in -the fall semester 1989-as Carnegie Mellon course
15-413, Software Engineering. There were 19 undergraduate seniors enrolled, including
17 from mathematics/computer science and 2 from electrical and computer engineering.
Three would graduate at the end of the fall-term, the other 16 in spring 1990. The majority
were interviewing-for jobsiin the-computing field, primarily in software. Several were
applying to-graduate schools. In addition, 4 graduate students and visitors audited the
lectures regularly.

On the first- day of-the course, we-askedthe students-(but not-the auditors) about their
background-in software. Table I1 shows-the programming and software system courses
taken by the 16 students -who -answered-this question. The formal prerequisite for-our
course was-any one:of the the courses marked with a ,P. Each of these courses gives the
students experience-with-medium-sized software systems. All-studentshad taken at least
one of the prerequisites; 5 students had-taken 2. Overall, the-mean number of previous
software courses was 6 per student;the range was 4 to 8; and the mode was 5.

Table 1.1 Students' Prior Software Course Experience (16 students reporting)

#Students PreReq Courses (one semester each
16 Introduction to Programming and Problem Solving
16 Fundamental Structures of Computer Science-I
.6 Fundamental Structures of Computer Science II

13 Comparative Programming Languages
10 P Operating Systems
9 P Artificial Intelligence: Representation & Problem Solving
3 Vision
2 Applied Algorithms (may be under-reported here)
2 Concurrency & Parallelism (elec. & comp. engr. course)
1 P Compiler Design
1 Parallel Programming
1 Knowledge-Based Systems
1 Robotics
1 Graphics
1 Computational Physics (physics course)

The graphs in Figures 1.1 and 1.2 show the students' prior experience with programming
languages and operating systems, respectively. We tried to determine from the responses
which students had-more extensive experience than use in a single course and-which ones
had only passing familiarity or experience in a single course. Note that because the
students' self-reporting was subjective, the information may not be consistent from one
student to another.

CMISEI-91-EM-4 - 3

Figure 1.1
Students' Languag eExperience at Beginning of Course

(18 students reporting)

20 -

18--
16-

14

2

Lisp C Pasca Modul Assemn- Post- -Ada Sdiemn Fortran Prolog Small- Cobol Basic -DCL Forth
a _bWescript -e lamk

Z- Famillar K Experiencerd

Figure 12
Students' Operating System Experience at Beginning of Course

(16 students-reporting)

20-

18-

161

14

12

Andrew Unix 0.her Conn DOS VMS Mac OS ViA RSTO Tops2O 0&~2 CP.M
w-:ndows Protocol

FzFan.5ar M Epernced

4 CINUISEI-91-ENT-4

Two-thirds of the students reported additional -experience, including.

* Programmingfor various Carnegie Mellon research projects.

* User consulting and- programming for Carnegie Mellon's academic
computing service.

* Summer jobs-with AT&T Bell Labs, Federal Aviation Administration (FAA),
Johns Hopkins Applied Physics Labs, Lockheed, IBM, NCR.

* Cobol database programming, Macintosh application programming, networks.

The students also described their own objectives in taking this coinrse; some of these
appeared several times:

• Learn more about various phases-and problems of software product
development.

* Expand my view of software design beyond the "programming" realm.

* Find out about complex software syztems.

* Compare formal design principles with software principles encountered in
summer work.

* Learn the fundamental ideas involved in software engineering, especially
project managemenL

• Gain some experience that will be useful when I go to work after graduating.

• Obtain large-group software experience; learn to work effectively in a group.

9 Learn enough about software engineering to be a useful member of a project in
industry.

* Don't know.

CMNUISEI-91-EM4 5

L3. Sylabus (final version)

The course syllabus that We gaveto the students-in November 1989 begins on the following
-page. It-is labeled "final-version' because we made changes to the original; most changes
involved-reordering lectures to -improve the match between lecture content and the project
or to take advantage of:special opportunities such as visitingjlecturers. Note -that the
lecture component is presented-twice: first by conceptualunit, then chronologically.

The descriptions~of lectures have been--annotated with-references to the corresponding
-support-materials in Parts II and-III of this educational materials package.

6 CMU/SEI-91-EM4

15-413: Software Engineering
Fall Semester 1989

Revised November 20, 1989

Course Staff
Instructors: E-mail address Office Office hours

Mary-Shaw shaw@cs-cmu.edu WeH 8214 Tu 3:30-4:30
Th 11:00-12:00

Bernd Bruegge bruegge@cs.cmu.edu WeH 4209 Mon 3:30-4:30
Wed 3:30-4:30

Teaching-Assistant:
John-Cheng jcheng@cs.cmu.edu WeH 3130 Tu 10:30-12:30

Objectives

Upon completion of this course, a student should:

• Understand the difference between a program and a software product.

• Be able todesign and implement a module that will be integrated in a larger system.

Each student will have demonstrated-the ability to:

• Work as a member of a project team, assuming various roles-as necessary.

• Create and followproject plans and test plans-

• Create the full range of documents associated with software products.

• Read and-understand papers from the-software literature.

Administrative Matters
Dates/times

Class meetings: TuTh 9-10:20 in.Scaife Hall 206.
Project team meetings: as necessary, but at least weekly (arranged-by each team).

Textbooks

Brooks: The-Mythical Man-Month. Addison-Wesley, 1975, reprinted 1982.
Marvin V. Zelkowitz: Selected Reprints in Software, Third Edition. Computer Society Press,

1987.

Computing
The project will be implemented as a service in Andrew.
If you don't have an Andrew account, we'll help you get one.

CMU/SEI-91-EM-4 7

The course bulle'.in board is academic.cs.15-413:and various sub-bboards. Subscribe-to
them.

Grading
-Project:-60%

8% for each phase: requirements, design, project plan, detailed design, implementation,
-unit testing,integration, and client acceptance.

Special incentive: if a- complete product- (specifications, project plan, design,
administrator and user documentation, and working code) with core functionality-is
delivered to the client-as a joint-effort of the course,-all students will receive at least
55 points for the project.

-Lectures: 40%
2% for each of 22 lectures: 1 point for short quiz on main point of the readig, 1 point for

1-2 page homework on main points of class discussion.
-instructors' evaluation: adjustmaent of up to 5%.

Standards 1

A: 90+
B: 80-89
C: 70-79, including at least 25-points from lectures and 40 points from project
D: 65-69 or 70-79, with wrong proportion of lectures and-project points
R: less than 65

Project Component Deadlines
Requirements -Sept. 26

Project Plan Oct. 3

Design Oct. 12

Detailed Design Oct. 26

Implementation Nov. 9

Unit Test -Nov. 16

System Integration Nov. 30

Acceptance -Dec. 7

1The project has 64 available points and the lecture 44.

8 CMU/SEI-91-EM-4

Lecture Component [28 lectures, 22 with readings]

Introduction [T lecture]
'Course organization (8/31). The nature-of software engineering; a brief sketch of its history.

Products vs- systems. Introduction to project. Reading after class: Brooks75 Chil. SEE
LECTURE MATERIALII.A

Software Life Cycle and Documentation [3 lectures]
Requirements (9/7). Determining what the client actually wants. Expressing it precisely.

Notations for requirements. Reading: Brooks75 Ch 6, Davis82. SEE LECTURE MATERIAL
II.B

Life cycle (9/12). The stages a software project goes through,-from-conception and
development to maintenance and retirement. Models for this life cycle. How well-the
models match reality. Reading: Brooks75 Ch 13, Davis88. SEE LECTURE MATERIAL II.C

Documentation (9/14). Retention and presentation of the information that is part of a-
software product but not explicit in-the code. Reading: Brooks75-Ch 10,-15. SEE
LECTURE MATERIAL II.D

Tools and Standards [2.5 lectures]
Fax formats andprotocols (9/19). Information about fax formats and communication

protocols that will be needed-for the project. Reading: McComb89, CCITT Group.3 and
Group 4. SEE LECTURE MATERIAL lI.E

Standards; Andrew (9/21). Role of standards in software. Information about the Andrew
editor and libraries that will be needed for the project. Reading: Poston84- 85. SEE
LECTURE MATERIAL II.F

Configuration management and version control (10/12). Consistencyiamong.versions of
subcomponents. Automation of system construction. Baselining and version control.
Reading: Feldman79, Tichy82. SEE-LECTURE MATERIAL IL.G

Management [5 lectures]
Project planning (9/26 and 9/28). Justifying projects. Making them fit-within existing

systems. Project o.rganization and milestones. Reading:-Brooks75 Ch 2, 3, 14,
Davenport89, Fairley86. SEE LECTURE MATERIAL II.H AND 11.1

Estimation and tracking-(10/5 and 10/10). Predicting size of product. Estimating time
required to create it. Models and statistics for these predictions. How well the models
work. Reading: Brooks75 Ch 7, 8, 9, Myers78, Myers89,-AdalC89. SEE LECTURE
MATERIAL IL.K AND II.J

Verification and-validation (10/17). Techniques for gaining confidence that software works.
Reading: Wallace 89. SEE LECTURE MATERIAL II.L

Software Design [5 lectures]
Abstraction (10/26). Role of abstraction in software engineering. Increasing abstraction size

as index of growth. Reading: Shaw84. SEE LECTURE MATERIAL II.M
System design (10/31 and 11/7). Conceptual integrity. System-level design techniques.

Survey of design methodologies. Reading: Brooks75 Ch 4, 5, Lampson84,
Bergland8l. SEE LECTURE MATERIAL IL.N AND 11.0

Software structures (11/2). System-level abstractions for software. Reading:
Shaw89. SEE LECTURE MATERIAL-II.P

CMU/SEI-91-EM-4 9

Software reuse (11/9). Not reinventing the wheel. Reading: Prieto-Diaz87.

SEE-LECTURE MATERIAL II.Q

Back End [3 lectures]
zProgramming environments (11/16). Tools and-environments-to-support-software-

development. -Reading: Brooks75-Ch 12, Kernighan8l, Dart87; -SEE LECTURE
MATERIAL II;R

Testing (11/21). Planning and executing a testing strategy. Reading: Howden85. SEE
LECTURE MATERIAL II.Sm

-Maintenance (11/30). Life after initial release. Fixing design errors,-adding new features.
Reading: Brooks75 Ch 1.1, Schneidewind87. SEE LECTURE MATERIAL IhT

The Software Engineering Profession [4 lectures]
The engineering component-of software engineering (10/3). Comparison of software

engineering to-older engineering disciplines. Lessons software engineering should
draw from this comparison. SEE LECTURE MATERIAL-ILU

Status of the profession (10/24). Concerns ahd prospectsmof the software engineering
profession. Reading: Musa85. SEE LECTURE MATERIAL IL.V

The work-force and-the job market (11/14). What it's like to-be a practitioner in software.
Panel discussion with repfesentatives from big software development, startup software,
and application software companies and a professional-ecruiter.

Intellectual property issues (1215). Kinds of intellectual property protection. Ownership of
results produced by programs. Reading: Legal Task Force84,-Gemignani85. SEE
LECTURE MATERIAL II.W

Project Discussions [4.5 lectures]
Requirements forproject (9/5). Client presents needs and answers:questions. SEE

PROJECT MATERIAL III.A-AND 1l1.B@
Discussion of design alternatives (9/21). Student presentations of design alternatives. SEE

PROJECT MATERIAL 1.1L
Client's design review (10/19). Presentations of-design. Opportunity for mid-course

correction. SEE PROJECT MATERIAL III.M
Internal reviewof project (11/28). Class discussion of project: progress, lessons learned.

SEE PROJECT MATERIAL III.J AND:III.V
Finalpresentations to client(12'7). Demonstration, acceptance test. SEE PROJECT

MATERIAL IllI.N-

Chronological list of lectures and reading assignments

8/31 Course -organization, software engineering, project- overview
Reading after class: Brooks75 Ch1 -(system vs. product)

SEE LECTURE MATERIALII.A
9/5 Requirements of project -and presentations of projects

SEEPROJECT MATERIAL-III.A.AND lII.B
9/7 Requirements

Reading: Brooks75 Ch 6: specifications
Davis82: purpose of requirements and survey of languages

SEE LECTURE MATERIAL II B

10-- CMU/SEI-91-EM-4

9/12 Life cycle
Reading: Broois75-Oh 13: elements of-life cycle

Davis88: comparison of life cycle models

SEE LECTURE MATERIAL II.0
9/14 Documentation

Reading: Brooks75-Ch 10, 15: documentation (specifications, user
documents)

SEE LECTURE MATERIAL ll.D_
9/19 Fax formats and protocols

Reading: McComb89: product review of-fax kits for Macs
SEE LECTURE MATERIAL II.E

9/21 -Standards and discussion of design alternatives
Reading: CCITT Group 3 and Group 4:-fax standards

Poston84-85: standards forsoftware
SEE LECTURE MATERIAL II.FAND PROJECT MATERIAL II.L

9/26 Project planning I
Reading: Fairley86: project plans
SEE LECTURE MATERIAL IL.H

9/28 Project planning II
-Reading: Brooks75 Ch 2, 3, 14: schedules, team organization

Davenport89: justifying a software project
SEE LECTURE MATERIAL 11.1

10/3 The engineering component of -software engineering
SEE LECTURE MATERIAL II.U

10/5 Estimation and tracking I
Reading: Brooks75 Ch 7, 8, 9: communication, estimation, resource control

Myers89: estimation techniques
SEE LECTURE MATERIAL II.J.

10/10 Estimation and tracking-Il
Reading: AdalC89: how well estimation works

Myers78: lire cycle curves
SEE LECTURE MATERIAL I.K

10/12 Configuration management and version control
Reading: Feldman79: make

Tichy82: RCS
SEE LECTURE MATERIAL II.G

10/17 Verification and validation
Reading: Wallace89:-survey
SEE LECTURE MATERIAL II.L

CMU/SEI-91-EM-4 11

10/19 Client design -review-
SEE LECTUREMATERIAL III.M

10/24 Status offthe profession
Reading:' Musa85" worl;shop of professional society leaders
SEE LECTURE MATERIAL II.V

10!26 Abstraction
Reading: Shaw84: growth of abstraction size as index of growth
SEE LECTURE MATERIAL IL.M

10131 System design 1i
Reading: Brooks75 Ch 4, 5: conceptual integrity, learning from experience

Lampson84: reflections of an expert-designer
SEE LECTURE MATERIALl.N

1-1/2 Software structures
Reading: Shaw89: comparison of typical architectures
SEE-LECTURE MATERIAL I.P

11/7 System design 11-
Reading: Bergland8l: survey of design methodologies,
SEE LECTURE MATERIAL 11.0

1119 Software -reuse
Reading: Prieto-Diaz87: classification for indexing arid retrieval
SEE-LECTURE MATERIAL II.a

11/14 The work force and the job market
PANEL DISCUSSION

11/16 Programming environments I
Reading: Brooks-75 Ch 12: software developers' tools

Kernighan 81: UNIX (you should know this already)
Dart87: survey of software development environments

SEE LECTURE MATERIAL II.R

11121 Testing
Reading: Howden85: functional testing
SEE LECTURE MATERIAL II.S

11128 Internal project -review
SEE- PROJECTMATERIAL Il.J AND III.V

11130 Maintenance
Reading: Brooks75 Ch 11: sys'.em evolution

Schneidewind87: survey
SEE LECTURE MATERIAL IL.T

12/5 Intellectual property issues
Reading: Legal Task Force 84: kinds of protection available

Gemignani85: ownership of results produced-by programs
SEE LECTURE MATERIAL II.W

1CM U/SE I-91-EM.4

-12/7 Final project presentation for client
SEE PROJECT MATERIAL III.N

References

Refer.ances to Selected Reprints are pal:ers :0.Y, " - t-'course text, Selected-Reprints in
Software, ThirdEdition, edited by-M. V. - (C" -,r Society Press 1987).
AdaIC89- AdaIC staff. Test case st&'.',estimating the cost of Ada sotware

development. Adalnformra,.on Clearinghouse Newsleler, March 1989,
pp. 4-6.

Bergland8l G. D.-Bergland. A guidedi,w ofprogram design methodologies.
Selected Reprints, p.28.

Brooks75 Frederick P. Brooks Jr. The Mythical Man-Month. Addison-Wesley
1975, reprinted 1982.

CCITT Group 3- CCITT. Standardizlion of group 3 facsimiie apparatus for document
transmission.

CCIT Group 4 CCITT. Facsimile coding schemes andcoding-control functions for
group 4 facsimile-apparatus.

Dart.87 Susan A. Da rt et al., Software development environments. IEEE
Computer, November 1987, pp. 18-28.

Davenport89 Thomas H. -Davenport, The case-of the soft software proposal. Harvard
Business Review, May-June 1989, pp. 12-24.

Davis82 A. M. Davis, The design-of a farnlly of application-oriented fequirements
languages. -Selected Reprints, p- 20.

Davis88. A. M. Daviset al., A strategy for comparing alternative software
developnir:t life cycle models. IEEE Transactions on Software
Engineering, October 1988, pp. 1453-146;.

Fairley86 Richard E. Fairley, A guide for preparing software project management
plans. Tutorial: Software Project Management,-fRichard Thayer (ed),
IEEE Computer Society, 1988, pp. 257-264. Fairley86 was-the basis for
IEEE Std. 1058.1-1987 (IEEE87-.

Feldman79 S. I. Feldman, Make: A program for maintaining computer programs.
Software Practice and Experience, April 1979, pp. 255-265.

Gemignani85 M. C. Gemignani, Who owns what software produces.
Selected Reprints, p. 121.

Howden85 W. E. Howder, The theoty and practice of functionaitesting.
Selected Reprints, p. 258.

IEEE87 Standard for-software project management plans, IEEE Std. 1058.1-
1987,:InstitUte of Electrical and Electronic Engineers, April 1991.

Kernighan8l B. W. Kernighan et-al., The UNIX programming environment. Selected
Reprints, p.-287

Lampson84 B. W. Lampson, Hints for computer system design. IEEE Software,
January 1984, pp. 11-28.

Legal Task Force 84 Task-Forceon Legal Aspects of:Computer-Based Technology,
Protection of computer ideawork-today and tomorrow. Selected
Reprints, p. 126.

Cr4U/SEI-91-EM-4 13

McComb89 Gordon McComb et al., The-fax factor. Macuser, Auguist 1989,- pp. 149-
160.

Musa85 J. D.- Musa, Software engineering: the fut ure of a profession. Selected
Reprints, p. 2.

Mvyer78- W. My!-ers, A statistical approach to scheduling software develoomrit.
Selectod Reprints,:p. 53.

Myers89- W. Myers, Allow plenty of -time-for large-scale softwaire. -IEEE Software,
July 1989, pp.-92.99.

Poston84-85 Robert-M. Posto ;=Software standards. Three columns on software
standa -rds from -IEEE Software. January- 1984, May-1985, September
1985.-

Prietc..Diaz87 R. Prieto-Diaz et a!;, C!,,nsifying software-fo-r reusability. Selec ted-
Reprints, p. 94.

Schn-eidewind87 N. F. Schneidewind, The state-of software-maintenance. IEUC
Transactions on-Software Engineering, March 1987, pp. 3G.-31O0-

Shaw84 M. Shaw, Abstraction techniques in modern programming languages.
Selected Reprints, p. 232.

Shaw89r M.-Shaw, Larger-scale s-ysterns require-higher-level-abstractions,
Proceedings of the Fifth -International.Workshop on Software
Specification and:Design,-May 1989, pp. 143-146.

Tichy82 W .-F. Tichy,-Design,-irnplemenitatioii, and evaluation of a-revision control
system . Proceedings of the-6th Intern atioinal Conference on Softwaro
Engineering, 1982,_pp. 58-67.

WallaceB9 D.-R. Wallace et aL, Software verification and validation: an overview.
IEEE--Softwa re, May 1989,-pp. 10-17.

14 CNIU/SEI-91-EM-4

L4. Lecture Component

The decision to make this a project-intensive course was strongly influenced-by the
history of the-course and its place in the Carnegie Mellon curriculum. Even after making
thatdecision, however, we-still had to-make decisions aboutthe scope of coverage and the
depth to which we could cover each topic.

The decision-on scope concerned what balance to strike between-material related-to the
management of software (life cycles, project organizationi estimation, scheduling, etc.)
and- material related to- technical -problems of large software system design and
construction (design techniques, tools, environments, testing ana maintenance, etc.).
We decided to strive for a-middle ground. Studenta need a- certain amount of knowledge
of software management -to complete a group project and to be prepared to work in
industrialprojects; on the other hand, this-is the-only opportunity most of these students
will have as undergraduates to loarn about the technical side of large-system
development. Further, it would be . slead ;gto suggest by our choice of content that
software engineering consists of nothirig but software management; it would be equally
misleading to ignore management to P:cs.

The- decision on depth was driven by practical considerations. We could identify any
number of techniques and tools for the students to use. However,:each would-require time
to learn well enough-to use, and-there simply isn't enough-time in a single semester to do
very much of that. Moreover, the current- technology is so di verse -that it's unlikely that
many students would-end-up in-environments with the-particular-tools they learned in the
course. We decided instead to survey the possibilities-to make sure the students
understood the-problem to be solved, the sorts of tools and tecnniques that exist, and the
-current shortcomings and growth potential of the-methods.

As a-result, we decided to use the lectures to survey major topicsir.-both-the management
and-technology of software engineering. We organized these topics into units of about
four-lectures each. We also budgeted- class:time for discussions about the project, project
reviews, and a unit on the nature of the software engineering profession.

When scheduling the lectures, we tried to place each topic at the point students would need
to apply it to the project. We found-that this wasn't quite- possible-about-three weeks'
coverage of life cycles, requirements, and project management should be covered before
the student began their project in the second week of class. We did, -however, make as
close a match as we could.

W'e:examined a-number oftextbooks and found that none, at-the time, matched the course
we w,:nted to teach. However, we knew of good, readabic papers oz. many of the topics on
our list. After some reflection, we deddedlthat Carnegie Mellon: sen:ors (like most other
senior computer science majors) should be-able to read papers from IEEE Software and
similar journals (IEEE Software is ipacifically intended to he accessible to practicing
software developers). Thus, we were able to-match topics with papers. More than a-third of
the appropriate readings were in Zelkowitz's IEEE reprint collection, Selected Reprints:in

1
CMU/SEI-9i-EM-4 - 15

Software,-so we selectedthat as-a-prime textbook and added Brooks' Mythical Man-Month
as additional reading.1

Specific lecture topics have already been described in Section 1.3, which also contains the
bibliography and pointers to supporting material. In addition to the explanations provided
there, the following notes may be-of interest.

*Back-of-the-envelope calculation: Duringthe semester, a homework assignment
reveal6d that -the students were not -able to perform the order-of-magnitude
estimates that-are needed to-predict whether system-performance and capacity are
even roughly matched to the system requirements. In response, we added
segments at the-end of two-lectures to give some-rules of thumb-and exercises to
discuss in class; This material appears in Sections-II.L and III.K-

*Becoming a professional: When we designed the course, we assumed that most of
the-students would not know much about the natureiof the software engineering
(or any other)-profession, so we included-a unit on -professional topics. The unit
included three -lectures and one panel discussion. Material for the lectures
appears in Sections II.U, II:V, and II.W. -In addition to the materials reproduced
here, we distributed student membership materialsfor the ACM and the-IEEE
-Computer Society. For the-panel discussion, we invited people who could speak
frankly about %what it's like to be an--entry-level programmer in (a) a large
esta-blished computer manufacturer, (b) a start-up company, and (c) an
application development group in a non-computer industry. We also invited a
professional recruiter of software personnel. Using specific examples from
software firms, the panelists talked about recruiting strategies, reasonable
expectations, career tracks, and other topics raised by the students. One might
argue that this- material should be covered in some other forum, such as a
com-puter club or student chapter meeting. Most of our students, however, would
not be reached this way, and this course presents the best alternative.

*Videotaped lectures: Two of the course lectures had previously been taped for-the
SEI Education Program. One was "Software and Some Lessons from
Engineering," part of the SEI Technology Series. The other- was "Language
Design and Abstraction Techniques," :a lecture for the SEI Academic Series
course, Formal, Methods in Software Engineering, which was videotaped
February 1988.-2(See Sections II.M andiI.U.)

1 One of us (Brugge) taught this course again in spring 1991 with another CMU instructor,
Jeannette Wing, and used the textbook Software Engineering with Student Project

Guidance, by B.T. Mynatt, Prentice Hall 1991. This book matches many of our teaching
goals, and we recommend it for teaching the course with a-textbook.

2These and other videotapes can-be ordered from the SEL For more information, contact
the Education Program, SEI, Carnegie Mellon University, Pittsburgh, PA 15213-3890, or
send electronic mail to education@sei.cmu.edu.

16 - CMU/SEI-91-EM-4

L5. Project Component

15.. Design Rationale
The main goal-of the-project-was-to give~students a-realistic view- of the-problems involved-i-

in- manufacturing a--complex software -system. Our intention .was to avoid the "toy
program"- approach and make the-project as realistic as possible. The project was to be a
vehicle-for giving thestudents hands-on experience with both technical and managerial
a spects -of building a large-software system.

Because we required the students to finish their-project, they had an additional-incentive to
apply the theoretical-knowledge ofthe lectures-to the actualconstruction of a product. By
applying software engineering principles to real problems, students deepened their
understanding of theoretical concepts and gained practical skills. It was our experience
that giving the students the goal of building a working product resulted in motivation at a
level we-have not see before.

We also emphasized the need to work together during the design, implementation, and
delivery-of the system. Students: must.learn to communicate with others on-a complex
problem, run project meetings, commit to schedules, and-deal with a client.

Finally, we selected a project of realistic-size, something that could be done by about 20
students in 1 semester. When making a rough estimate of staffing needs, we reasoned
this way: Our students are-typically taking 5 courses, and we can expect them to spend 9-
12 hours/week on ourcourse. We plan 2one-hour lectures per week, each of which-should
take an hour or so outside class for-preparation. This leaves 5-7 hours per student per week
for the project. With about 20 students, we should have the-full-time equivalent of 100-140
hours per week, or about 3 full-time equivalents - (ignoring communication -overheads,
which are almost certainly substantial). The projectaruns for slightly over 3 months, and
we should allow a safety factor for problems and estimation errors. Therefore, we- were
looking for a project that should take about 3-4 full-time staff months. Selecting too large a
project would- essentially guarantee failure.

During the summer before the course, we requested-proposals from the campus community
for projects that involved real users but.were not on the critical path of any development.
We selected a project proposed by the Information Technology Center (ITC) which
involved the extension of an electronic mail system to provide facsimile (fax)
transmission, and-we --k it, Works;tion Fax.

The emphasis in Workstation Fax was on functionality; performance was secondary.
Receiving or sending of fax images takes a matter of minutes, so we assumed that a
system latency-the time between sending a fax and receiving it--on the order of 15-30
minutes would be acceptable, assuming-no a-lditional delays in the mail system.

CMUISEI-91-EM-4 17

L5.2. Project Organization

A task of the magnitude of Workstation-Fax could not be accomplished-if the system had to
be designed and:implemented from scratch. Identifying existing software and hardware
for reuse was therefore axmajor.part of our project-preparation.

One of-the attractive properties of-the Workstation Fax proposal was that it identified
several existing components-and proposed a project that combined these-elements-to obtain
the final product. The main component for reuse was the-Andrew mail message system.
In Workstation Fax, the user sends and receives-fax transmissions via the Andrew mail
facility without-needing to produce hardcopies. Sending a fax image from an Andrew
workstation involves converting a text-or Andrew raster image into Group 3 fax format.
As part of the Andrew project, the ITC-had built tool kits for dealing with a variety of raster
image conversions, including Group-3-fax. Thistool kit provided the-underlying-routines
for manipulating- fax images.

Receiving a fax image by e-mail is difficult because the delivery information on the cover
sheet is not in digital form. It would-be unrealisticto expect this projectto include software
that interprets-the wide variety of cover page-fo.-mats, including the-handwritifig often
used to provide routing-information. To deal with this, we decided to route incoming faxes
manually by reusing the Andrew bulletin boardTacility: the incoming fax is posted on a
specialbulletin board and routed from-there by a human to-the final destination.

To avoid requiring a full imple nentation of the Group 3 fax protocol-(which would have
been unreasonably difficult), w, also- looked at commercially available fax boards from
several companies. Xerox offers a -fax board- that can be inserted directly into a
workstation. However, the students needed the specification of the board, which we could
not get in time for proprietary reasons. Instead, we selected the JT fax board from
Quadram because of its availability and price. The JT fax-board is inserted into a card
slot of an IBM PC and comes with associated software to interactively send and receive
faxes from the PC-that is, to send the contents of-a file on its disk as an outgoing-fax or to
store an incoming fax as a file.

We set up a laboratory with two machines: the IBM PC with-its fax board connected to a
phone line, and an Andrew workstation to be used for sending and receiving fax images
by e-mail. Then-we gave each student a key to the room.

L5.3. °Team Selection and Internal Team Management

Before the class started, we decomposed the project into :four areas: sender, receiver,
administration, and cover sheet (see III.A). These four subprojects had to work
individually; but for the project to succeed, the products of all four groups had to integrate
successfully. This introduced an element of coordination not present in many project
courses.

In the first lecture, we asked the students to express their preferences for one of the project
areas-and-to indicate if they had any-personal preferences about the other students they
would work with. Because of the possibility that the replies would yield conflicting

18 CMU/SEI-91-EM4

O constraints, we committed only to takelthese preferences into -consideration; in practice,however, a reasonably good match of assignments to.preferences-was possible.

In class, we presented a range of project management schemes (see III.D), -introducing
three main p rolect functions (project management, project leader, liaison with other
groups) and three support functions-(document editor, programmer, and record keeper)
(see IILE, page 9f). We -asked each of the -teams to map the project responsibilities
according to their own preferences, with the-following constraints: the project- leader and-
the liaison roles had to be-rotated on a regular basis among the-team members, and each-
team member had to;assume each of these roles at'least once during the project. The idea=
was to have consistency for functions such as version control and documentation, but also-
to ensure thateverybody had to deal with intra-team (project leader) as-well as inter-team-
(liaison) responsibilities.

L5.4. Phases

Development of Workstation Fax followed a software life-cycle model. We -selected the
following phases: requirements, -project planning, design, -detailed design,
-implementation, unit testing,- and system integration.

At the beginnin-ofthe project, we-presented the students with an-initial-project description-
(see-III.A) and-a project schedule (see ILE, page 3) with three -important milestones: client
presentation at the beginning of the semester, a formal- project review-at midterm, and a
client acceptance testat the end of the semester.

By giving the students an -initial- version -of -the requirements specification- and project
subdivision, we deemphasized the requirements specification. In the context of our
undergraduate program-and we think in most others as well--development to a given
requirement is the logical thing to address at this point. Undergraduate curricula are
intrinsically bottom-up. Students learn to deal with progressively larger pieces of
software and larger segments of -the software life cycle. In this global sequence, selection
of a design should come before requirements analysis.

To ensure that the students ended up with a working system, we asked them to produce
three versions of Workstation Fax in the following order:

" Astub version of the functionality to ensure that system integration would work
iimoothly.

• A version that passes the client acceptance test.

* A version that allows various related activities to occur in parallel as much as
possibles(activities such as sending fax mail requests, receiving fax by mail,
sendiing~or receiving fax images, and billing".

Before the class started, we set up a global directory with a subdirectory for each of these
versions.

CMU/SEI-91-EM-4 - -19

L5.5. Trade Between Student Initiatives and Structure Imposed by-the
Instructor

One characteristic of teaching a project in a university is that the staffing (that is, the-class enrollment) is flat orslightly falling J1,ri ng.the development of'the project. This is

a problem when only a -few people are needed for a certain phase =and everybody else is:
idle. In the abstract, it is-best if the design is donhe by a few-people and-then staff is added to-

carry out the design. This phenomenon has.-already =been observed by Brooks. We-
immediately had-19 designers! Not only that, but pedagogical concerns argue-that all 19-
should have a part in all-stages.

A small group of students- proposed--a system -design almost immediately after we had-
given out the system requirements (see III.L). The design-was very- good, but we did not
accept it initially~because we were concerned that the rest of the class would assume only a
passive receptive-role. Instead, we wanted to teach everybody how to deal with the issues of
designing a complex system. We think this can be done oily if each-student is-confronted

with All the design problems and struggles for-a solution. Students will not-grasp the
complexity of a -system design that -is handed down from somebody else-even other
students.

We encouraged the other students topropose different designs. This work resulted in a
long design phase; it also- frustrated several students who--did not see "their" design win.
(This-Was but onie of many times when we had-to help students understand that certain-
frustrations are almost unavoidable.) We scheduled a class in -which several slide
presentations were given by the students with- alternative design -proposals (see III.L).
Many-different opinions were voiced, some quite-loudly, but- at the end of this class we had-
the feeling that every student was aware of the design alternatives and was-
knowledgeable enough to ufiderstand-the issues and acceptthe selected design. The social-

processes of consensus building were discussed-in lecture a-week or two later (see II.I).

One could argue-here that We spent too much time in the design phase, but we don't-think
so. Once the students formed groups to discuss design alternatives, we saw an opportunity
to teach both the difficulties of dealing with a-complex system and-at a very ioncrete
level--communication and-cooperation problems We expanded the time here because the
students were -highly motivated and eager to discuss their own views. If such an-
opportunity arises in a class, the teacher should be flexible and adjust the class schedule
even at the expense of other important topics such as quality assurance or configuration
management. In fact, we believe that-our students learned- to appreciate the problems of
software development because we allowed alternative views to be presented, -discussed
and resolved.

L5.6. Trade Between Pedagogical and Project Objectives

We believe it is 4important-for software engineering students to becn.cme familiar with all
aspects-of complex software system development, particularly the issues that arise during=
system integration and delivery. We-therefore emphasized finishing-a product:by a fixed
deadline.

2- CMU/SEI-91-EM-4

0 As a-result, We had to trade certain pedagogical objectives. For example, even-though we
asked-the students to-use a-version- control-system-and a strict scheme for change requests,
we did not always -enforce= that request. Nor did we require that -the documents be
consistent and complete during system integration. Many changes occurred after-the
groups had submitted their documents. Given- the limited time, we considered it more
important for~the students to write -additional documents such as the unit test manuals.and
user manual- than-to revise the requirement specification. As-a-result, the requirements
specification-documents are not consistent with the implementation; for example, the
requirements specification-document submitted -by the administration- group- defines an
Andrew mail-message interface for all interactions with-the user. This was replaced by a
C shell interface during the implementation, but the document was never updated. We
believe that the balance we struck-is a reasonable one. However, when a breach occurs
between what is being taught and what is being done in the project, -it is important to
acknowledge this discrepancy and explain to -the students both the reason and the
consequences.

We also believe-given the-complexity of the task-and the-short time available-that it was
better- to allow students to work with their own documentation tools than to ask -them to use
specific tools. This-decision is reflected-in the various styles used in documents and
source code- submitted by the groups. Some of the groups used-a Macintosh application,
others used the Andrew EZ-.editor, and-yet others used Scribe (a document-compiler -lass
text-formatter).

When teaching this- course -later, Brugge and Wing used-StP (Softwarerthrough- Pictures),
a CASE tool provided by Interactive Development Environments. The students used the
structured analysis- and structured design methods (SA/SD) for the -requirements -and
design phases, respectively. The use of the CASE tool encouraged the use of templates
during these -phases and led to consistent documents. In addition, the examples -and
templates provided in Mynatt's textbook were consistent with thenotation used by StP.

The disadvantage ofiCASE tools is-the additional-learning experience the students-need at
the beginning-of the semester. We believe that this additional- overhead was more than
offset by the:consistency among the group-projects. By using a CASE tol such as StP,:each
group was always aware of interface changes in the other groups-differences in the
requirements specifications of the individual groups became visible in the structure
charts. We therefore recommend the use-of a CASE tool, if it is available, for a project-
oriented class in software-engineering.

L5.7. Risks-and Problems

We Were aware at the outset that this project had certain-risks and potential problems.

Based on the answers to the questionnaire distributed at the beginning of the class (see
Figure 1.1), we assumed everybody knew-C and Andrew. This-was incorrect. Some of the
students misunderstood what we -meant by theAterm language familiarity. In fact, two
students in one group did it have any programming experience in the C language at all.
This had an-impact-on the-progress of this group but was eventually absorbed internally:
the other team members taught the two students how to program in C.

CMU/SEI-91-EM-4 21

Another risk was that a major part-of the receiver-task relied on the raster graphics-tool kit 9
library (RGTK), which was written by a-student working part-time during the summer.
To minimize the_ risk, we hired this student as -a consultant for the project. This was-
-helpful in-two ways. First,-there were several bugs in the RGTK library, which the student
found and- fixed- during-the semester, making the- success- of the -receiver group :possible.
Second, the students-gained experienceindealing_ with anexternal consultant.

The finaLselection of the fax board-was done only-three days before the-class started and
after most of the initial project handout (see II.A) had been-written. As it turned out, the JT
faix software was-not useful at all. It did not allow for scheduled sends and did not record-
status information aboutlthe success of the fax transmission. In-an extraordinary effort,
the sender group rewrote.the JT fax software. This work-was, of course, not planned; and-
it changed our project into a real-life project with deadline misses and- the chance of
failure up-to the last week before the client-acceptance test.

.8. InhernalProject Review

At the end of the-semester, before the start of theasystem-integration phase, we asked the
students in a homework problem to think about a redesign and reimplementation of
Workstation Fax in an-industrial environment. The idea was to- have them write abouv
their experience--and reflect on problems they had encountered.- The assignment also
allowed the students to vent some steam that they had developed as-the result ofsome ofour
decisions. The homework question and-a representative subset of student answers is
containedin Section III.V, with no -changes except for correction of spelling mistakes. 9
We summarized- students' answers and discussed them in an internal review on
November 28 (see III.J). The results of this activity were very encouraging. The teams
felt much more comfortable with -each other; they realized- they were solving a problem-
together;:and they realized that the teachers were--aware of many of their difficulties.

In the following paragraphs, we reflect on the results of the-internal review and-on the
project in general; We hope that these reflections are helpful to teachers who are designing
similar courses..

L5.8.1 Unforeseen Problems

One of the biggest problems we experienced in the project was caused by the late selection of
the fax board. We didn't look carefully enough at -the board and- we overlooked:
deficiencies in the associated software: it was not able to- do scheduled: delivery of fax,
provide-status information, or send raster images. These -deficiencies created an obstacle
for the sender group, which missed most of-their scheduled milestones because they had-to
rewrite the board software. An additional complication arose when the-developer of the
fax board sold the product and the new vendor was unable to provide much help to the
students;

The above problems caused frustration, but-they also provided a good opportunity to gain
realistic project experience. The students had to:review their design and:implementation
and revise their project plans as a:result of the problems. The point we want to stress here
is that in a project with a real client, one has to expect problems. The challenge for the

22 CMU/SEI-91-EM-4

teacher is-to accept whatever problems arise and incorporate -them into the lecture or
discuss them in-the project meetings.

Another problem was that we were not able-to install the-Andrew workstation in the-lab at
the -beginning of-the project. In fact, the workstation was installed two weeks before the
client acceptance-test.This was an-obstacle because the students had to move-between the
fax:lab room to send or receive transmissions and.a terminal cluster-room to submit fax
requests. -This kind of resource allocation: problem is =likely to happen in -one form or
another. The best-a teacher can-do is to explain it to the students, pointing out that one-has to
expect problems when building a real system.

L5.8.2 Role Rotation

For each -group we defined two main functions -(project leader and liaison) and three
support functions (document editor, -programmer, - and- record keeper). To ensure that all-
students gained- experience as project leader and liaison, we asked them to -rotate these
roles on a regular basis. (The responsibilities for the project functions- and the role
rotation scheme-are explained-in more detail in Section III.F, page 8.)

Many students complained about the role rotation scheme, and we agree that it did not
work very well. The scheme particularly- caused problems when the first phase slips
occiirred and we Asked students to revise documents from-previous phases when they were-
already assigned to other roles in the new phase; This-was very confusing -for both the
students and the teachers. We-therefore do not recommend our scheme-for future courses.

1.5.8.3 Communication

Often, meeting minutes were not propagated by the liaisons to:the other members-of the
team. As-a result, some students complained that they were left in the dark about what
exactly Was going on; others-suspected that not-everybody was privileged: to the same
information. We pointed out to the students that this was not our intention but that it
reflected the real software world- quite well. The situation improved after we added a new
responsibility for the liaison: minutes of liaison meetings had to be posted on the project
bulletin board.

L5U8.4 Team Decomposition

Looking back, we think that-the decomposition -into four-teams was done too early. The
advantage of having teams from the very beginning is -that people immediately identify
themselves with the project. However, problems-can occur when new tasks arise which
are not clearly one team's responsibility. An alte native, which we recommend, is to split
students into temporary groups for the design, let them develop one or more designs, select
the best design, and -then reorganize the students according to the work packages
identified-in the selected design.

L5.8.5 Documentation

The production -of documents for the individual- phases was another problem. Many
students would have appreciated templates that provided format and content outlines for
the required documents (see III.J and III.V). We did provide an outline for user

CMU/SEI-91-EM-4 23

documentation (seeII.D), a content template for software project management (seeII.H),
and- a& checklist -for test planning (see II.L); but we did- not systematically provide
document templates. One reason was- that for -iany phases in the life cycle, useful
templates were not available when we taught the-course. This-situation is changing.

When -we did use templates-for example, Fairley's template for -software -project
management (see-=I.H)-we_had good- experiences. However; setting up a full software
project-management plan requires more:effort than can be expected of students in such a
short time. We therefore provided most of Fairley's template (see III.E) and asked the
students to fill in the sections on work package- definition, people management, and

schedules (see-IIIQ).

The future course-designer should provide a set of-guidelines-and checklists, in particular
for the requirement specification and- design phases. This was mentioned by many
students during the internal- project review. Textbooks such as B.T. Mynatt's Software
Engineering with Student Project Guidance or S.L. Pfleeger's Software Engineering:
The Production-of Quality Software contain many -useful templates for the various life
cycle -phases.

1.5.8.6-Versions

We believe that a-prototypetis an important aspect of a project course. The -goal of the
prototype version is to-encourage students to produce a rudimentary system early-so they
can get-feedback from the client. In our-project, the prototype Was never shown to the-client
mainly-because ofelack of time. In fact, the prototype was compiled only once-and-never
seriously used.

In retrospect, it was probably not realistic for us-to expect an experimental version: as
soon as the students produced a versionthat passed-the client:acceptance-test, they stopped
working-on the implementation. We thdrefore-recommend the- replacement of the detailed
design-phase by aprototypingphase and more emphasis on testing the user interface. If the
selected project is-very risky,:as in our case, a prototype has another advantage. It might be
the only part of the-project that can be completed during the course.

-L5.9. Explanation of Project Exhibits (Part III of this set of educational
- materials)

The project-related exhibits are grouped into two- parts: documents and slides that were
handed-out to the students (III.A-K), and documentation produced by the students (III.L-
W). Each document is briefly described below.

Handouts:

ILA Initial Project Description
Students received-this document at the:beginning-of the course. It contains an overview of
the requirement specification, the overall schedule, our grading policy, and various
organizational details.

24 .CMU/SEI-91-EM-4

9IILB Requirement Specification Slides

We:presented these slides-at the-beginning of the project. After the -presentation, we asked
the students to form groups. In the next lecture the client presented-his needs.

I[LC Requirement Specification Document

This: requirements document for- the full system was taken almost verbatim -from .e
initial project description. We-gave this document to-students after discussing- software
project management.

IIl.D Project Management Issues

We presented- theseslidesbefore asking-each group to.organize itself.

IE Software ProjectManagement Plan

After discussing Fairley's software project management plan, we handed out this
document. It follows Fairley's template- very closely. We filled out most-of the sections-
and asked- the students-of each group to write-Section-4.4, Technical Process, andSection
4.5., Work- Elements and Schedule (see -Section III.Q):

.F System Design Issues

These slides were presented at -the beginning of the system design phase. One -of the
groups had already submitted-a design-and another group was working on-an alternative.

J.G System Design Document

This document was produced after a special class on-alternative designs and a follow-up
discussion. The final design is a-result-of these discussions- with the -students and-is based
on their submitted designs.

I.H Client Review Plan

This document includes discussion of the functions needed-for the formal client review
and assignment of people-to these functions.

9
CMU/SEI-91-EM4 2

fml Detailed Design

This document announces a liaison meeting to the -rest of the class. Several decisions
were made concerning error messages and return results of public functions. A global
data structure-fax Jype was also defined-in that meeting.

ILJ -Status, System Integration, Discussion

We used these slides for status, systemintegration assignments and the internal project
review.

E.K ClientAcceptance Test

This section contains the status of the project two days before the-client acceptance test, and
an announcementof the revised schedule.

Student Documentation:

m.L Design Proposals

These proposals were submitted-by students during-the design phase.

MI.M Design Review Slides

Material for the formal client:review, which was conducted by the students. The client
and several interested people were present.

IH.N Client Acceptance Test Slides

Material for the formal client:acceptance-test. The-presentation-was done completely- by
students and was videotaped. The client and several interested people from other
departments were=present.

IM1.O Requirement Specification

This documentation was submitted by the teams at the end of the-requirements phase. Note
the inconsistencies of the documents, in particular, the user message specification. The
requirem-ents were- written- when it was Assumed that the -interaction with the user was
completely by e-mail. We encouraged consistency but did not enforce it.

2CMU/SEI-91-EM-4

I.P Design

The design-documents submitted-by the-four groups.

lI.Q Software Project Management Plan

Section 4.4 Technical Process and Section 4.5 Work- Elements -and Schedule ofiFairley's
software management plan template. Note-that the- Administration-group submitted a full

planfor this project.

IIR Detailed Design

The -detailed designs subiiittedby the four groups.

II.S- Unit Testiig

The-unit test manuals submitted by the four groups.

IHi.T User Manual

-The-user manual, which was written collaborativelyby thefour groups, with-one student
responsible for the final -document.

I.U Administrator Manual

This-manual was written-for the operator who needs-to know howxto -start up and operate
Workstation Fax, -and for the administrative assistant who -needs to know how to read
cover sheets of incoming fax images and remail them to -the indicated person. The
manual was -written by the four groups, with one student responsible for -the final
document.

I.V Internal Project Review

This material is the result of a homework assignment-that was used to evaluate the project

in-the middle of the semester. We-asked students to-discuss how- to redesign Workstation
Fax in an industrial setting. Wealso encouraged them to evaluate-the project itself.

CMU/SEI-91-EM-4 - 27

III.W Fax Examples

This-section contains several fax images that were created-by-the students. The-first page
is an example of acover sheet of type raster that-was implemented-bythe cover sheet group
but not used because only -sending ofltext was implemented. The second example is the
first successfully transmitted Fax from the-JT fax machine to the- fax machine in the
university's Engineering and Science-Library. As -partof-the system integration test, we
asked-the students to send-the-invitation to the client acceptance test;The actualinvitation
received is shown as a third example. The final examples are the-two fax images that
were produced during the client acceptance test. Note the- client's signature, which was
added-to the fax-after it was received at the fax machine-and before-it was resent to the
sender.

MXYZ Bboard Discussions, Agendas

Examples of students' project discussions on the Andrew bulletin-board. Examples of
meeting agendas.

28 CMU/SEI-91-EM-4

L6. Administtion

1.6.L. Staffig

A project-intensive course in software -engineering requires- considerable time and
attention to detail onithe part of the course staff. A list of tasks forthe instructor includes:

* Preparing and-presenting lectures

* Preparing andgrading quizzes

--Preparing and grading homework assignments

- Designing the-project-and anticipating problems

* Writing and revising project-documents

* SetUing-up common procedures (vei'siorl control, document templates)

S-Acquiring tools, components, :and associated documentation

* Coordinating with the-client

9 Troubleshooting in the'lab

*0 Holding project meetings

• Monitoring inter-project communication

* Being available during and outside office hours

In addition, a project involves not only separate group results but also- the -integration- of
these-results. Integration requires extra coordination that-is notnecessary-in traditional
courses.

In our course, we divided the above tasks into lecture and project-specific responsibilities
and distributed them among several people: a lecturer Who dealt with- the class-related
issues, a project manager who assumed the project-specific -tasks, and a- teaching
assistant who was responsible for grading and for attending tht provsct meetings. We
also hired a consultant who was familiar with the-experimental Andrew software that the
students used. Coordination among these-activities was done quite frequently, in weekly
meetings as well as by e-mail; and if difficulties -arose, we did not hesitate to change the
syllabus. For -example, in the middle of the semester it became clear that we needed a
project review with all the students; therefore, we: added an internal project review to the
class schedule.

Although we taught the course with-three people, most of our experience should be useful to
an instructor who teaches such a course alone. This instructor has two alternatives:
spreading the lecture and project material over two semesters or cutting back-in one or
more areas. Teaching the course in two semesters has the disadvantage discussed in
Section 1.6.3.

CMU/SEI-91-EM-4 -2

The- main advantage-of a project-intensive course in software engineering- omes from
interleaving the lecture material with-the project-experience. An-inhstructor teaching the
course alone-should therefore- implement-a more -modest project, such as a compiler for a
small language. However, the instructor should- be aware that selecting -too small a
project willnot teach-the students realistic software engineering principles.

L6.2. Credit and Grading Policy

A course of this kind presents several special problems:

- Grading team-efforts

-* Fostering cooperation rather than competition

* Making-lectures-seem relevant

. Getting the readings read-

Below, we-will address each problem and the way we handled it.-The common thread-of
our- solutions is being explicit about our-objectives and aligning the:incentives: (primarily
grades) with the behaviors wetwish to encourage. This does, of course, force-us to grade
what's important rather than what's easy.to grade.

L6.2,L Grading Team Efforts

Our gradingpolicy was guided by the desire to discourage- competitiveness and encourage
communication among the students. At the beginning of class, we handed out the
following grading policy (see III.A):

The -project proceeds in- the following phases: requirements, project plan,
design, detailed design implementation, unit testing, and system
integration.Each phase-results ina baseline document to be- submitted- to the
project management before the deadline. -Each document is reviewed at-least
once by the project management-before it becomes a-baseline-document.

Each baseline-document is worth-up to 8-points if it is submitted in time. We
subtract 1 poifit per day for documents submitted after the deadline. -We will
give an A to everybody who participated inrthe project if the complete software
system passes the client acceptance test as defined in the requirement
specification document. If the-complete software-system fails the acceptance
test, an individual project-still gets an A ifit demonstrates that the individual
component passes its-acceptance test in the testbed environment of the
individual project.

Workstation Fax is a project that puts emphasis on collaboration, not
competition, between the students. We will not accept a system that is:done by
one team alone.

With group grades, there is the danger that very active students might feel that others are
getting a "free ride." In fact,.in the last third of the semester, we started splitting one
group's grades to deal-with a student who did not participate in delivering documents or

30 CMU/SEI-91-EM-4

programs, even when the deadlines were-extended. We announced our decision to this
group-only, not to the whole-class. We discovered to our surprise-that the student then gave
much-;more effort, in fact, -more than any other-student in the group. As a- result, -we
upgraded the student's grade-to the full grade.

One would think that this-is a sign that our initial grading policy was-wrong. But we-are
more inclined-to.belie-ve that it works for-the majority ofthe students. One might say that
grade-splitting works for the minority of students-who need a separate grade to be able to
structure their priorities, but our sample is much too small to be statistically valid.

L6.2.2. Fostering Cooperation Rather Than Competition

Like many students, ours are competitive. Thisfcompetition is-often-grade-directed, and
students can be distracted- from learning by uncertainties about their class standing.
Even- worse, they are accustomed- to courses graded "on a curve," with a limit on, the
number of A and B grades awarded. This -inhibits- cooperation and even leads to
counterproductive behaviorthat would lower-some other student's grade.

Since a project course depends critically~on cooperation among students, we addressed
this problem-directly. In addition-to assigning group grades (which promotes cooperation
within groups), we provided a completion incentive: if the project passed the-acceptance
test through the efforts of the class as a whole, every student would receive at least 55 of the
64 project points. We also-defused the uncertainty of the grading curve by publishing the
grading scale at the beginning-of the semester.

L6.2.3. Convincing Students That Lectures Are Relevant

When the grade in-a course depends primarily on project work, students tend to spend
their time on the-project instead-of on the lecture and associated- readings. (This-is true in
programming courses in general;;in extreme cases we've seen students so-focused on
making progress on a project that they wouldn't pay attention to the lectures that told them
how to solve the problems easily.)

We addressed the problem of convincing - students that the lectures were relevant in
several ways. First, we committed 40% of the course grade to -individual performance in
the lecture portion of the -course. This is commensurate with our assessment of the
appropriate balance-of time and content; happily, it also.helps reduce apprehension about
the vulnerability of a student's own grade to the vagaries of other students. Second, we
scheduled the lecture material for presentation as close as possible to the time students
would need it for the project. Finally, homework assignments usually required students
to explain a connection between the lecture and the project.

L6.2.4. Getting the Readings Read

In any course, students often postpone assigned readings until-the night before a test. We
were daunted by the prospect of students doing the reading in this way.

Our solution was to give a-5-minute quiz~at the beginning of every class with an assigned
reading (about 22 of the 28 classes). The quiz was easy and intended to-determine whether
the students had captured-the main point of thereadiag. For the most part, the quizzes
showed the students to tLe doing the reading. An added benefit-was that wc could assume

CMIU/SEI-91-EM4. 31

the reading as shared context between the instructor and the students; as a result, the
lectures could provide motivation, context, and evaluation rather than-just repeating the
substance of the reading.

1.6.2.5;. Sunmmry
Whatever the-grading policy, it is hard to grade -a software engineering -project

consistently. At-the end of the-semester, there was a-chance that the deadline for the client
acceptance test-would not bemet. The-sender group had problems with-the fax board and
related-software, and they were still-trying to-debug when-the other-groups had-already
moved:to the unit testing phase. If we-had strictly appliedzour grading policy, we would
have subtracted a point for~each day the sender group was late. However, we-did not
subtract any points at all. We believed-the main motivation for the students came from the
fact-that they were working on a product-for a real-client, and this turned-out to be correct.

L6.3. Coordination Between Lectures and Project

In a course organized around a project, -synchronization between the class lecturesiand the
project-phases isrimportant.-If it is done well, the student can instantiate- class concepts
almost immediately in the-project, and-the project experience-can be used-in class.

Synchronization is hard to achieve, especially in-the early phases of the project, When the
students are not yet familiar with co-cepts they need. (Nor is it possible to have the

students apply all:the concepts taught in class.) One-solution-to this problem is to teach the
course-in two semesters. Inithe first semester, all-the software engineering concepts are
taught;,in-the second semester they are applied to the project. However, we believe it is
better--ttu teach the course -in one semester and use the synchronization problems as
pedagogical tools. Whenever the project demanded some knowledge-from the students
before-it was taught, we found- that the students were much more motivated when we
covered the material in the lecture.

For example, we asked the students to-do a requirement specification before we discussed
the topic in class, and to develop a project plan before we gave the lecture on planning. In
both cases, we asked the-students to express themselves informally at first and revise their
documents after the lecture was given. We found-that thisapproach worked well.

We also tried to keep the lectures coordinated with the project by giving homework
questions that required the student to apply lecture-material to the project. In more than one
case, We incorporated their answers into our next-lecture.

L6.4. Communication

One of the most difficult problems in any group-project is the problem of communication.
As the size of the group grows, the number of possible communication channels increase
geometrically. In any project of more than trivial size, communication is likely to
become the major bottleneck in software engineering. The problem is exacerbated
because the students' workload limits them to spending approximately 20% of their time on
this project. Because each student is only 20% as productive as a full-time staff-member,
the number of students needed to complete the project is somewhat large, making

32 __CMUISEI-91-EM-4

communicationdifficult. Additionally, these students are not in-constant contact-eight
hours a day as :they would:be in a "real-world" environment. Hence, communication is
further complicated-a student may not be able to simply walk down the hall to talk to a co-
worker.

Since communication is crucial to any project, especially a student project, it is necessary
to establish effective mechanisms for interaction among~peiple in a-group and interaction
between groups. In this course, we established two primary mechanisms: group meetings
-and- electronic bhulletin boards.

To ensure intra-group communication, each group held weekly meetings. Discussions=
usually centered around the current state of that group's-progress, what each member of the
group was working on, and any problems -that had been encountered. Group leaders
conducted- these meetings,. usually according to =an agenda. Agendas were -used as a
means of making sure thatithe meetings had-direction. Without this precaution, meetings
often cease to be a productive use-of time. Minutes from-the meetings were posted, both to
record progress and to keep othergroups abreast of-current happenings.

Meetings between the-group liaisons were held periodically to-keep the project-as a whole
synchronized. The current state of each group was discuised and, more importantly,
interactions and-expectatiofis between the groups were ironed out; for example,-the details
of a module and-its external interface could -be clarified.
The other-major means of communication was electronic bulletin boards, or bboards. We
used a group of bboards that were set up before the course started (see III.E). The bboards

could be read by all members of the class and any person in the university who subscribed
to them, but only designated people could post messages. Two bboards were used for lecture
announcements-and project announcements;only the instructors were allowcd-to posL on
these bboards. Another bboard was designated for-discussions about the project; students,
instructors, and-the external client could post on-this bboard.-Finally, we created bboards
for each ofthe teams-for group-specific topics, and only-the team members could post on
these.

One.great-advantage-of bboards is their convenience. First, users-can read and post at
any terminal. In the CMU Andrew environment, access to bboards is easy and
convenient because of-the large number of terminal clusters. A second advantage is that
these bboards leave a record of all posts. For example, if a design decision is discussed
using a bbeard (see III.XYZ), there is a-record of all the issues that were considered; this is
useful for documentation, maintenance, and many other activities. Third, the structure
of our bboards allows students to track dow-relevant information easily. Bboard readers
find information they-want:without having to-wade through irrelevant data. For example,
if a person wishes one-day to track the progress of a team, he or she needs to read only that
team's bboard.

However, bboards become useless if they are not part of the "culture" of the environment.
That is, unless students log into a computer frequently to check bboard messages, the
medium is ineffective. In our course, bboards were a means of communicating
announcements and minutes from meetings, as well as a forum for asking and
answering questions.

CMU/SEI-91-EM-4 33

1.6.5. Mechanics

Computer support is importantfor instructors as well as for students. In addition to the
usaal Word processing facilities, we relied heavily on support -for overhead projection
transparencies for lecture materials and on spreadsheets and form letters-for computing
grades _and advising students -oftheir status.

The various lecturers produced overhead projection-transparencies on the systems they
found most convenient. The consensus was-that of the-systems weused, PowerPoint on the
Macintosh provided the best-combinationof capabilities. It can-combine text--with simple
graphics easily; it will accept drawings and charts-from other Macintosh systems (a
number of graphs-were produced with Excel and imported, for example); and it provides
automatic facilities for making handouts formatted with two -or six slides per page;
Students-told us that they preferred the handouts at six slides per page; for the-font sizes we
used, this provided -adequate legibility with minimum bulk. We-also used FrameMaker
under XWindows on a Sun in some cases where it was more convenient.

We maintained grades using-an Excel spreadsheet on.a Macintosh. We wanted to do two
things-that made this grading-template more complex-than the-usual one: -we -wanted to
record group grades on -project phases in-.one place and propagate the result to all the
students involved,:and we wanted to provide periodic-feedback to individual -students on
their current course status, including current percentage and projected grade. Figures L.3
and 1.4I show how -the former is done in Excel; Figures 1.5 to I.7v-show how=the latter -is
accomplished by exporting data from ExceL to the form letter facility of Word.

Since the project grades complicate the spreadsheet a little, we exhibit a slightly simplified
version of the course spreadsheet. Figure 1.3 shows values for- grades and Figure 14
shows the formulas. The simplified version shows five homework assignments, two
exams, :and a final-instead of the daily homework and- quizzes that we actually assigned
but this:has little-effect on the basic template. The names and grades in the example are, of
course, ifictitious.

Look first at rows 4 through 15. Row 4 not-only labels the columns-but serves to-provide the
tag fields required-for form letters. Rows-5-13 give -individual- grades for each student.
Row 15:gives the perfect score for the -orresponding column. It is-filled in as~the semester
progresses, so the sums in row15 show the~scores that-a student could have earned at the
current point in the semester; this makes it possible to compute the current grade
automatically.

Columns M-O and: R-V are individual exam or homework grades. Columns L and Q
(rows 5-15) sum the raw scores-of exams and homeworks, respectively. Columns C andE
give the points earned thus far-for project and lecture, while column G is their sum (total
points). Columns DF, and H- are the corresponding percentages,:and columns I, J, and K
are the-conversions of those percentages to letter grades.

Next look at Rows 19to 22, ignoring columns H and I for the moment. Each of rows 19-22
corresponds to one of the project-groups. Grades for each of the phases are entered in
columns N-U, and-their sum is computed-in column L. The "override provision" (if client
accepts-the project, all groups get at least 55 points of the 60) is implemented as the sum

34 CMU/SEI-91-EM-4

from-column L is moved forward to column C. The-project grade foreach group is then
propagated to each student in the-group-by locating the student's gr-up (given in-column B,
rows 5-13) in the table-formed by columns A and C, rows 19-22. -Columns H-and I- of rows
18-23 (the-boxed, italicized cells) form a-table used to convert percentages to letter grades in
columns-I-K of rows 5-15. (The placement of this table at-this location was a matter of
convenience. Resist the temptation to confuse it with some aspect of computing-project-
group grades.)

CMU/SEI-91-EM.4 35

Figure 1.3

Values of Grading Spreadsheet

-A .8 1~ D- E- IF I -G H- i K-
__ 15-413, Fall Semester 1989= __ __

-_2 Course Grades--
'-3 Project Lecture-___ Total ___

-4 Name:--u-rii Po~t LecPts LecPct TotPts TotPct- 3roi G LecG GradE
5 jJim Adams Cove -57.5 95.8% -35.80 _=89.5% _93.301 93.3% A --B- A

-_6 Ann Brown Rec 55.0 91.7%/, 35.70 --89.3% -90.701 90. 7%/ A I B A
---7- Barbara Davis Send -55.0 91.7% 36.00 --90.0% -91.001 91.0% A I-A A
:___8 John-Doe Rec 55.0 91.7% 28.60 _71.5% -83.60 -83.6% A- -C B-
--9 Sam-Jones Cove 57.5 95.8% 38.10 -95.3% 95.60 95.6% A 7A A
10 Mike-Miller Send, 55.0 91.7% 33.60, 184.0% -88.60 88.6% A B B-
:11 Jane R oe- Adm 57.0 95.0% 33.80 8.% 980 08% A - A
-12 Robert Smfth Adm -57.0 95.0% 30.20 -75.5% -87.20 87.2% A -C B
13 Susan-Valker Send 55091.7% 37.00 '92.5% -92.00 92.0% A --A A-
A14 ______ ________

15- PERFECT SCORE - 60.0 100.0% -40.00 1 00.0%/o 100.00 100.0% A -:A A
-A6 - -- -----

:18 1PROJECT GROUPS ___ vr~ 5. RDE SCALE
19 Adm I - 57.0 ___ ___0.0% -R-
-20 Cover- 1 57.5 --65.0% JD - -

-211 Rec 7 55.0 -70.0% CO
-22 Send __ 55.0 ___ 80.0% B
-23- PERFECT SCORE 160.01 --1 _ - 1 _ 90.0%- A - -

M N 0_ P -__ R I-S T --U- V

2- LECTURE GRADES -

3- Total 110/51L -1117 -12110 Total- -9/19 -10/10 -10/17 11/21 11/28
4 Exams Exi Ex2 Final -- Hwk -Hwkl Hwk2 Hwk3 Hwk4 Hwk5-
5 18.60 -4.0 -4.9 9.71 17.20 :2.4 3.8 3.2 -4.0 4.0_

:-6 19.70 5.0 -4.7 10.0 - -16.00 -4.0 -2.8 -3.2 -4.0 2.0
-_7- 17.20 4.6. 3.9 -8.7 - 18.80, -4.0 4.0- 3.4 3.7 3.7
-8 11-.70- 3.5 8.2 - 16.90 2.4 4.0- 4.0 -3.0 3.5-
9- 19.00 5.0 4.6 9.4 ___19.10 -4. 0 4.0- 3.7 -3.4 -4.0
10 17.60 4.8- 4.1 -8.7 - 16.00 -4.01 - 4.0 4.0 4.0-

A11 15.10 -4.3 3.81 -7.0 18.70 3.6 3.6 3.5, -.0 4.0,
12- 19.00, 4.01 5.0 10.0 - -11.20 2.8- 2.8 1.6 -4.0 ___

13 1.0 4.71- 5.0 9.8 -17.50 -3.6 3.7- 3.8 4.0 2.4

15 20.00 5.0 -5.0 -10.0 -20.00 -4.0 4.0 -40 -4.0 4.0

17POETR 9/26 10/3 10/121-10/26 11/91 11/16 11/30, 12/5 -

18 Total If Rgts Plan-- Dsign Fn Sp Ipl- UnitT lnteq l~ccetance

201 57.501 Cover 6.5 7.5 7.5 7.5 7.5 -6.5- .
i21 54.001 Rec 7.5-_7 -6- 5 -7 7 7 7.
22 51.501 Send 7.51 6.-5 7 5 6 6 3 7-7.
23 60.001 .1 7 .5 7.5 7.5 75 7.5-75 7.

36 CMU/SEI-91-EM-4

enU4 ~ 3: , -C fn-)I

N3 -r-

:4 ~~ X~ MXt xmNdb - coo 201 9 n

el O- C4 Vt: 6rlI

MO 4vC vi v C-;tir IV

SN -11 N ~ -1 N~~~ N o4 6c s1

g> >
+~ A

Z_ :D D

-9 1 1 1N I -A fjf!lni N N r
:vL

m~ -1-c a% N n

21 1O-c~

CM /SI.1-I. v37N

Microsoft Word on the Macintosh includes a facility for generating form letters. A
master form.letter for-this class is shown in in Figure 1.5. The datat file is-expected to-
contain one- line with-field names, separated by tabs or commas, andone line-per letter
with values for fields-in an oider corresponding to the names. Such a file can be
generated from the spreadsheetof Figure 1.3 by saving it from Excel in text-only form,
then using -Word to delete lines-1-3 and:14-23. . The result-is showmin Figure-1.6. The
Print-Merge.-Command:is executed on the master-form letter to produce individualized
-grade reports-as illustrated in Figure 1.7. Special messages to individual students may be-
added with-the editor before printing the letters.

Figure 1.5

Template for Student Form Letter

,DATA-Grade Sheet Ex -Text),

((Name ,
To: ,,Name,)
-From: -MaryShaw
-Re: 15-413ustanding
Date: December 12, 1989

The summary below shows your standing in the software engineering course asof December 12, 1989. If this-irecord does not match yours,-please let-ne know.

If you have homework assignments that you haven't gotten-around to turning in,
please doso soon.

Project Points Lecture Points Total Points % Grade
,,ProjPts,, ,,LecPts, ,TotPts-, ,,TotPct,, ((Grade))-

Lecture Grades
10/5 1-1/7 Final

-Exams ,,Ex1" , Ex2,, ,,Final,,

9/19 10/10 10/17 -11/21 11/28
Homework,,Hwkl,, ,,Hwk2" ,,Hwk3,, ,,Hwk4 Hwk5,,

38- CMU/SEI-91-EM-4

-n

ZC'' N, 0U o0

c)Cj1 q 666 -C cl

v D0 40 0 QCD Wh

0 00-00 00 0

N (D00 m oG-Nr

c d N 4N

U. (7) - CO0) to N 0-0)0

W44vi .4 4_ 6Ui

-, - 0(0 wnO 0Ct)60 N

E-O0 0-0 0 0 00 0

W - ,.C' N0 o- 0. -

-W

070

a o- c C

SLow

44_C D0 Cc -

(.5

I-0)C) 0) Go 0) O 0) co 0)

0 Mo 0 0- 0 M0 N No

CD-Cn D 0 -WAV U CM-

Ojc0 0) N co -_ C)O66 .

00-0 000 0 -00

J -l -l . NI n -l Cf n n)

0

0 0000in 000

0to U)n in) inn U) inU- In in

a.~-

2 > c >- E-E c

(D

CC m/MI-I-:EMX

Figure1.7

Sample Form Letter

Jim Adams

To: Jim Adams

From: -Mary Shaw-

Re: 15-413 standing

Date: December 12; 1989

The-summary below shows your standing in-the software engineering course as-of December
12, 1989; -If this recorddoes not match-yours, please-let me Rknow.

If you have homework assignments that you haven't gottenaround-to-turning in, please do so
soon.

Project Points. Lecture Points Total-Points % Grade

57.5 35.80: -93.30 -93.3% A

Lecture-Grades
10/5- 1-177 -Final

Exams 4.0 4.9 :9.7

9/19- 10/10 10/17 11/21 11/28-
Homework 2.4 3.6 -3.2 4.0 4.0

4 - CMU/SEI-91-EM-4

L7. Conclusions

We have described ca project-oriented-undergraduate course in--software- engineering. We
taught this- course to senior-students who intended to enter professional careers as-software
developersiand leaders of software development teams. The students-were required to
apply the theoretical knowledge of the lectures to the -actual construction of a complex
software system. It-was our-experience-that presentingthe goal-of a working product to the-
students was a strong incentive for them and-resulted-in a level of motivation we-have not
seen before.

Finishing the project was =the primary motivation for -most of our students. Having a-
client for the project increased the motivation; The presence -ofa client also increased the
overhead-during the-organization of the project. The enthusiasm-of the students who know
they are delivering a real product more than compensates for this.

We see this course-as our-last chance to teach the difference between a programming,
exercise and a delivered software product. Because there is too-much material to cover in
depth in one semester, we surveyed the issues in the lectures, using the-project to provide-
motivation -and context. Thus, the-project :served not only -as an advanced -software
development task but also as the "glue" to connect the topics surveyed in the lectures.

We recommend teaching all the material- in a one-semester course. The project
reinforces many of the concepts taught in the-lecture and vice versa. We found that the
students exhibited -enthusiasm during the lectures when they4-could immediately apply
many of the concepts to their-project.

If grading is required, group-grades -with some-flexibility work -well.

An -internal project reviewAis an integral part of a-project -course. It clarifies many.
unspoken problems and helps to maintain the enthusiasm the students had at the
beginning of the semester. We therefore recommend-such a milestone in every project
course at about the middle of the semester.

A software engineering project course with a real client is time-intensive for teachers as
well as students. If done well, the rewards are-great for~both.

CMU/SEI-91-EM-4 41

-42 CMU/SEI-91-EM-4

* Order Form-for EM-4, Parts II and III

Parts II and III of educational materials package CMU/SEI-91-EM-4
contain instructors' lecture materials,(including transparency
masters, homework assignments, and quizzes) and .course project
materials prepared by students- and instructors.

To receive-the set of two 3-ring-Ji.nders, complete this form and return it
with $55.00 payment to:

Education Program
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890-

Checks shoid be made payable to :Carnegie Mellon-University and

should accompanythis order form.

Name____

Address -

Amount enclosed $_ _ ($55.00 per set)

CMU/SEI-91-EM-4 43

-NMTDUNCLASSIFIED
SECURITY aASSIPICA31ON OFMhIS PAGE

REPORT DOCUMENTATION PAGE
-Ia. REPORTSECURITYCASSIFICATION lb. RESTRICTIVE MARKINGS

-Unclassified -None

2a. SECURITY CLASSIFICATION AUTHORITY -3sDISTRIBUTION/AVAILABILIT OF REPORT'
N/A -Approved for Public Release

2b. DECLASSIFICATIO,\JDOWNGRADINGSCML -Distribution Unlimited
N/A _________________

4. PERFORMING ORGANIEZATION REPORT NUMBER(S -~MONTRN ORAIZTO RPR BUER(S)

CMU/SEI-9 1"EM-4 -Educational Materials
6a. NAME OF PERFORMING ORGAINIZTON 7- 6b. OFFICE SYMBlOL 72. NAME OF MONITORING ORGANIZATION

I-SoftwareEngineering Institute j _SEI Joint-Program Office-

6c. ADDRESS (City, State and ZIP Code) -7b. ADDRESS_(City. State and ZIP Code)
Carnegie -Mellon- University -ESDIAVS
-Pittsburgh PA-15213 -Hanscomr Air Force Base- MA 01731

8a. NAME OFFUNDING/SPONSORING Sb. OFFICE SYMBOL -;PROCREMENINSTRUMENT ID124"IRCATIONNUMBER
ORGANIZATION (if'opplicable) F 68000

SEI Joint Program Office ESD/AVS.
Sc. ADDRESS (City, State and ZIP Code) 10. SOURCE OFFUNDING NOS.

Camnegie-MellonlUniversity PROGRAM PROJECT TASK V ORK UNIT
-Pittsburgh PA 15213 EL.EME1 7NO NO. IN O

63756E N/A N/A -N/A
-11. TITLE (Include Security Classification) -

IA Software--!Engineering_ Project Course with-- a- Real Client
12. PERSONAL AUTHOR(S)

Bernd- -Bruegge, John- Cheng, Mary -Shaw
13a.TYPE OF REPORIM 13b. TIME COVERED14 DATE OF REPORT (Yr., Mo., Day)- IS 1PAGE COUNTl

[July 199114
16. S U P PIENTARIMY- NTATIN

617. COSATI CODES- -______1SUBEITEM(Catneoevseo caiy and identify by block nuntbec)

FIELD GROUP SUB. GR.
software engineering education

- . project courses

ABST~i(ortuueo vif df software-management

t-I. ABt I(ou nreveseifneccsaryand idenury by block numiber)

IAt Carnegie Mellon, we taught An introductory software engineering course that
-was organized around a-project with a real deliverable for a real-client. This
case study -describes the background--and organization-of the -course and presents
the lecture and project materials produced by the faculty and students of the
course.

(please turn over)

20. DISTRIBUTIONIAVAILABIUITY OF ABSTRACT 2!1. ABSTRACT SECURITY CLASSIFICATION
UNCLASSlMEDAINLINUTED SAME AS RPTTIC USERS* Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 2.TLPOEUME nu&t.(id) 2cOFCESBL
Charles-J.-Ryan,1 Major, USAF (412) 268-7631 ESD/AVS-(SEI)

DD)FORM 1473, 83 APR- EDMoNof I]AN 73 IS OBSOLETE UNLIMI1I. UNCL.ASSIFIED
SECURITY CI~iswPC~rIO.o:0-TLS

The-Software Engineering Institute (SEI) is a federally funded research and development center, operated byCarnegie.O Mellon University under contract with the United States Department of Defense.

The SEI Graduate Curriculum Project is developing a wide range of materials to support software engineering-education.
A curriculum module (CM) identifies and outlines the content of a specific topic area, and is intended-to beused-by-an
-instructor in designing a course. A support materials package (SM) contains materials related to a module-that may-be
-helpful in teaching a course. An educational materials package (EM) contains other materials not necessarily-related to-a
curriculum module. Other publications include software engineering curriculum recommendations and course-designs.

SEI educational materials are being made available to educators throughoutJhe academic, industrial and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course-bytlie
SEI, by Carnegie Mellon University, or by the United States government.

Permission to make copies or derivative works of SEI curriculum modules, support materials, and educational materials isgranted, without fee, provided that the copies and derivative works are not made or distributed-for direc commercial
advantage, and that-all copies and derivative works cite the original document by name, author's name, and document-
number and give notice that the copying is by permission of Carnegie Mellon University.

Comments on SEI educational materials and requests for additional information should be addressed-tothe Education
Program, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213. Electronic-mail
can be sent to education@sei.cmu.edu on the Internet.

Curriculum Modules (Support Materials available) Educational Materials

CM-1 [superseded by CM-19] EM-i Software Maintenance Exercises fora Software
-CM-2 Introduction to Sot ware Design Engineering Project Course
CM-3 The Software Technical Review Process* EM-2 APSE Interactive Monitor: An Artifact fortS6ftware
CM-4 -Software Configuration Management' Engineerig Education
CM-5 -Information Protection EM-3 Reading Computer Programs: Instructors-Guide Arid=

Exercises_ CM-6 -oftware SafetyCM-7Assura o Software EM-4 A Software Engineering Project Course with a Real-
CM-7 -Assurance of Software Quality Client
CM-B Fona Specification of Software' EM-5 Scenes of Software Inspections: Video Dramatizations
CM-9 Unit Testing and Analysis forthe Classroom
CM-10 Models of Software Evolution: Life Cycle and Process EM-6 Materials to Support Teaching a Project-Intensive
CM-11 Software Specifications: A Framework Introduction to Software Engineering
CM-12 Software Metrics
CM-13 Introduction to Software Verification and Validation
CM-14 Intellectual Property Protection for Software
CM-15 [no longer available]
CM-16 Software Development Using VDM
CM-17 User Interface Development!
CM-18 [superseded by CM-23]
CM-19 Software Requirements
CM-20 Formal Verification of Programs
CM-21 Software Project Management
CM-22 Software Design Methods for Real-Time Systems*
CM-23 Technical Writing for Software Engineers
CM-24 Concepts of Concurrent Programming
CM-25 Language and System Support for Concurrent

Programming*
CM-26 Understanding Program Dependencies

-.

